Improving global temperature datasets to better account for non‐uniform warming

Author:

Calvert Bruce T. T.1ORCID

Affiliation:

1. Independent Researcher Ottawa Ontario Canada

Abstract

AbstractTo estimate changes in global mean surface temperature (GMST), one must infer past temperatures for regions of the planet that lacked observations. While current global instrumental temperature datasets (GITDs) estimate different rates of warming for different regions of the planet, this non‐uniform warming is often modelled as residuals relative to underlying trends of spatially uniform warming. To better account for spatial non‐uniform trends in warming, a new GITD was created that used maximum likelihood estimation (MLE) to combine the land surface air temperature (LSAT) anomalies of non‐infilled HadCRUT5 with the sea surface temperature (SST) anomalies of HadSST4. This GITD better accounts for non‐uniform trends in warming in two ways. Firstly, the underlying warming trends in the model are allowed to vary spatially and by the time of year. Secondly, climatological differences between open‐sea and sea ice regions are used to better account for changes in sea ice concentrations (SICs). These improvements increase the estimate of GMST change from the late 19th century (1850–1900) to 2023 by 0.006°C and 0.079°C, respectively. Although, for the latter improvement, tests suggest that there may be an overcorrection by a factor of two and estimates of SICs for the late 19th century are a significant source of unquantified uncertainty. In addition, this new GITD has other improvements compared to the HadCRUT5 Analysis dataset, including correcting for a small underestimation of LSAT warming between 1961 and 1990, taking advantage of temporal correlations of observations, taking advantage of correlations between land and open‐sea observations, and better treatment of the El Niño Southern Oscillation (ENSO). Overall, the median estimate of GMST change from the late 19th century to 2023 is 1.548°C, with a 95% confidence interval of [1.449°C, 1.635°C].

Publisher

Wiley

Reference80 articles.

1. A new look at the statistical model identification

2. Climate and Forecast Metadata Conventions. (2024)CF Standard Name Table Version 84. Available from:https://cfconventions.org/Data/cf‐standard‐names/current/build/cf‐standard‐name‐table.html

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3