Influence of slab structure on the behavioral analysis of hybrid outrigger system

Author:

John Neethu Elizabeth1,Kamath Kiran1

Affiliation:

1. Department of Civil Engineering, Manipal Institute of Technology Manipal Academy of Higher Education Manipal India

Abstract

SummaryOutriggers are internal structural systems used to enhance the stiffness and strength of high‐rise structures. This research investigates the efficacy of a hybrid outrigger system (HOS) which consists of one conventional and one virtual outrigger at two distinct floor levels in high‐rise RCC buildings. A non‐dimensional quantity, ϒ, defined as the relative stiffness ratio between the core and the diaphragm is used to describe variations in the stiffness of the building's core, stiffness of floor diaphragm, breadth, and height of the structure, in the behavioral analysis of the HOS. To investigate the efficacy and optimum locations of the hybrid outriggers, static and dynamic analysis are carried out on models with four‐story heights of 140, 210, 280, and 350 m under static wind loading, uniform wind loading, equivalent static earthquake loading, and dynamic earthquake loading. Results are assessed based on the responses from roof displacement (Disptop), base bending moment, roof acceleration (Acctop), fundamental period, and absolute maximum inter‐story drift ratio (ISDabs.max). Based on the minimum responses of the aforementioned dependent parameters under wind and earthquake excitations, the corresponding optimum locations of hybrid outriggers are investigated. To investigate the impact of the slab on the functionality of the HOS, the behavior of shell stress variation in the tension and compression side of the slab at the outrigger floor level and the force transmission through the column at the outrigger level is analyzed. Also, the optimum location of the hybrid outriggers based on the ideal performance index (IdealPI) is investigated. IdealPI is defined as a parameter that considers the combined response of Disptop, Acctop, and ISDabs.max and the criteria required for the structure under wind and seismic loads. From the behavioral analysis results, it is found that an increase in the stiffness of the slab showed an improved performance of the HOS compared to an increase in the stiffness of the core, and HOS performance can be maximized by increasing both thickness of the slab and outrigger arm length. The findings of the optimum location analysis could serve as a guide for structural engineers when selecting suitable positions for hybrid outriggers in high‐rise structures.

Publisher

Wiley

Subject

Building and Construction,Architecture,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3