Sexual size and shape dimorphism, and allometric scaling in the pupal and adult traits of Eristalis tenax

Author:

Ludoški Jasmina1ORCID,Francuski Ljubinka12ORCID,Gojković Nemanja1ORCID,Matić Bojana1,Milankov Vesna1ORCID

Affiliation:

1. Department of Biology and Ecology, Faculty of Sciences University of Novi Sad Novi Sad Serbia

2. Protix BV Dongen The Netherlands

Abstract

AbstractThe patterns and amount of variation in size, shape, and/or life history traits between females and males are fundamentally important to gain the comprehensive understanding of the evolution of phenotypic diversity. In addition, the covariation of phenotypic traits can significantly contribute to morphological diversification and sexual dimorphism (SD). Using linear and geometric morphometrics, 237 Eristalis tenax specimens sampled from five populations were, therefore, comparatively assessed for the variation in sexual size dimorphism (SSD), sexual shape dimorphism (SShD), and life history traits, as well as for trait covariation (ontogenetic and static allometry). Pupal body, adult wing, and body mass traits were analyzed. Female‐biased SSD was observed for pupal length, width, and centroid size, adult wing centroid size, mass, wing loading, and wing area. Conversely, pupal length/width ratio, developmental time, and mass were not found to be sexually dimorphic. Next, wing SShD, but not pupal body SShD was revealed, while allometry was found to be an important “determinant of SD” at the adult stage, with only a minor impact at the pupal stage. By comparing the patterns of covariance (based on allometric slope and intercept) between respective body mass and morphometric traits of pupae and adults, greater variation in allometric slopes was found in adult traits, while static allometries of the two stages significantly differed, as well. Finally, the results indicate that changes in the allometric intercept could be an important source of intraspecific variation and SD in drone fly adults.

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3