Experimental study on the effect of tight gas fracturing flowback fluid composition on the performance of modified polyacrylamide viscosity reducing and slippery water system

Author:

Xiong Feng1ORCID,Wang Xue‐Qiang1,Liu Yang1,Chen Long1,Zhao Zhi‐Hong1,Yang Hao1,Hu Jing‐Yu1,Li Ding1,Zhang Yu1,Li Ya‐Ding2

Affiliation:

1. Quality Inspection and Evaluation Institute Engineering Technology Research Institute of Petrochina Southwest Oil and Gas Field Company Chengdu China

2. Exploration and Development Department Sichuan Shale Gas Exploration and Development Co., Ltd Chengdu People's Republic of China

Abstract

AbstractTight gas belongs to unconventional gas reservoirs, and to obtain high gas production, it needs to be fractured and reformed. After the construction is completed, a large amount of flowback fluid is produced. In order to reduce the cost of flowback fluid treatment and avoid environmental pollution, a slippery water system with flowback fluid is usually used on the site of hydraulic fracturing. Almost all flowback fluids contain high‐order cations such as calcium ions, magnesium ions, iron ions, and a large amount of suspended solids. Some flowback fluids contain incomplete gel‐breaking micelles and unseparated condensate oil. The performance of the viscosity‐reducing and slippery water system with flowback fluid as the base fluid is poor, usually manifested as low viscosity of the slippery water, low friction reduction rate, and high formation damage. To study the effect of tight gas fracturing flowback fluid on the performance of modified polyacrylamide viscosity‐reducing and slippery water system, this paper found through cryo‐electron microscopy scanning experiments that the flowback fluid made the modified polyacrylamide molecular chain unable to form a complex network structure and showed the phenomenon of reduced strength and aggregation. The effects of mineralization degree, calcium and magnesium ions, divalent and trivalent iron ions, suspended solids, pH value, and oil content on the viscosity, friction reduction performance, and rock damage of the viscosity‐reducing and slippery water system were analyzed experimentally. It was found that the viscosity of the viscosity‐reducing and slippery water system was mainly affected by divalent iron ions, calcium and magnesium ions and other divalent cations; the friction reduction rate was mainly affected by the content of suspended solids and oil content; and the rock damage was mainly affected by the pH value and the content of suspended solids. Based on this, recommended parameters for reusing tight gas fracturing flowback fluid are given to guide the smooth progress of hydraulic fracturing construction on‐site.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3