Quantifying the impact of sample, instrument, and data processing on biological signatures in modern and fossil tissues detected with Raman spectroscopy

Author:

Wiemann Jasmina12345ORCID,Heck Philipp R.12

Affiliation:

1. Robert A. Pritzker Center for Meteoritics and Polar Studies, Earth Science Section, Negaunee Integrative Research Center Field Museum of Natural History Chicago Illinois USA

2. Department of the Geophysical Sciences University of Chicago Chicago Illinois USA

3. Department of Earth and Planetary Sciences Johns Hopkins University Baltimore Maryland USA

4. Division of Geological and Planetary Sciences California Institute of Technology Pasadena California USA

5. Natural History Museum of Los Angeles County Los Angeles California USA

Abstract

AbstractRaman spectroscopy is a popular tool for characterizing complex biological materials and their geological remains. Ordination methods, such as principal component analysis (PCA), use spectral variance to create a compositional space, the ChemoSpace, grouping samples based on spectroscopic manifestations reflecting different biological properties or geological processes. PCA allows to reduce the dimensionality of complex spectroscopic data and facilitates the extraction of informative features into formats suitable for downstream statistical analyses, thus representing a first step in the development of diagnostic biosignatures from complex modern and fossil tissues. For such samples, however, there is presently no systematic and accessible survey of the impact of sample, instrument, and spectral processing on the occupation of the ChemoSpace. Here, the influence of sample count, unwanted signals and different signal‐to‐noise ratios, spectrometer decalibration, baseline subtraction, and spectral normalization on ChemoSpace grouping is investigated and exemplified using synthetic spectra. Increase in sample size improves the dissociation of groups in the ChemoSpace, and our sample yields a representative and mostly stable pattern in occupation with less than 10 samples per group. The impact of systemic interference of different amplitude and frequency, periodical or random features that can be introduced by instrument or sample, on compositional biological signatures is reduced by PCA and allows to extract biological information even when spectra of differing signal‐to‐noise ratios are compared. Routine offsets ( 1 cm−1) in spectrometer calibration contribute in our sample to less than 0.1% of the total spectral variance captured in the ChemoSpace and do not obscure biological information. Standard adaptive baselining, together with normalization, increases spectral comparability and facilitates the extraction of informative features. The ChemoSpace approach to biosignatures represents a powerful tool for exploring, denoising, and integrating molecular information from modern and ancient organismal samples.

Funder

Agouron Institute

Tawani Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3