Co(O)4(N)‐type single‐atom‐based catalysts and ligand‐driven modulation of electrocatalytic properties for reducing oxygen molecules

Author:

Shin Yunseok1,Lee Yeunhee2,Jo Changbum1,Kim Yong‐Hyun23,Park Sungjin1ORCID

Affiliation:

1. Department of Chemistry and Chemical Engineering Inha University Incheon South Korea

2. Graduate School of Nanoscience and Technology Korea Advanced Institute of Science and Technology (KAIST) Daejeon South Korea

3. Department of Physics Korea Advanced of Science and Technology (KAIST) Daejeon South Korea

Abstract

AbstractSingle‐atom‐based catalysts are intriguing electrocatalytic platforms that combine the advantages of molecular catalysts and conductive carbon‐based materials. In this work, hybrids (Co‐NrGO‐1 and Co‐NrGO‐2) were generated by wet‐reactions between organometallic complexes (Co(CH3COO)2 and Co[CH3(CH2)3CH(C2H5)COO]2, respectively) and N‐doped reduced graphene oxide at 25°C. Various characterizations revealed the formation of atomically dispersed Co(O)4(N) species in Co‐NrGO‐2. Density functional theory (DFT) calculations explained the effect of the aliphatic C7 group in Co2 on the formation processes. The Co‐NrGO‐2 hybrid showed excellent catalytic performance, such as onset (0.94 V) and half‐wave (0.83 V) potentials, for electrochemical oxygen reduction reaction (ORR). Co‐NrGO‐2 outperformed Co‐NrGO‐1, which was explained by more back donation to the antibonding orbitals of O2 from electron‐rich aliphatic groups. DFT calculations support this feature, with mechanistic investigations showing favored ORR reactions and facile breakage of double bonds in O2.

Funder

National Research Foundation of Korea

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3