Biochemical responses, growth and reproduction of earthworm in low density polyethylene (LDPE)

Author:

Angmo Deachen1,Dutta Rahil1,Singh Jaswinder2ORCID,Chowdhary Anu Bala1,Quadar Jahangeer1,Thakur Babita3,Kaur Hardeep4,Sharma Manik1,Singh Sharanpreet1,Vig Adarsh Pal1ORCID

Affiliation:

1. Department of Botanical and Environmental Sciences Guru Nanak Dev University Amritsar India

2. Department of Zoology Khalsa College Amritsar Punjab India

3. Department of Microbiology School of Bioengineering and Biosciences Lovely Professional University Phagwara Punjab India

4. Department of Chemistry Khalsa College Amritsar Punjab India

Abstract

AbstractThere is an unprecedented production of plastic that is accelerating its disposal while affecting the fitness of the terrestrial as well as the aquatic environment. The term microplastics refers to plastic fragments that are less than 5 mm in size and are widely distributed in the environment. Therefore, the present study intends to explore the biological response of earthworms (Eisenia fetida) toward different concentrations of low‐density polyethylene. E. fetida treated with low‐density polyethylene concentration (Control), 250 mg kg−1, 1000 mg kg−1, 6000 mg kg−1, 12,000 mg kg−1, and 25,000 mg kg−1. The above ratios were thoroughly mixed with 1kg of artificial soil and tested for growth, reproduction (cocoons and hatchling count), and enzymatic activities namely superoxide dismutase, guaiacol peroxidase, glutathione‐S‐transferase, and glutathione reductase and molecular docking studies. No mortality was observed during the exposure period at any concentrations. On the 28th day, when compared to the control the highest decrease in body weight of earthworms was observed in 25,000 mg (28.4%) followed by 12,000 mg (12.2%) and 6000 mg (3.4%). The cocoon and hatchlings significantly declined as the dose of microplastics increases. Enzymatic activity such as SOD and POD showed declined trend as the dose increased, while GST and GR increased with an increase in microplastic concentrations on 28th day. Furthermore, molecular docking showed that LDPE can modulate the activity of all four enzymes significantly.

Funder

University Grants Commission

Publisher

Wiley

Subject

Management, Monitoring, Policy and Law,Public Health, Environmental and Occupational Health,Pollution,Waste Management and Disposal

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3