The geomorphological record of an ice stream to ice shelf transition in Northeast Greenland

Author:

Lane Timothy P.1ORCID,Darvill Christopher2,Rea Brice R.3,Bentley Michael J.4,Smith James A.5,Jamieson Stewart S.R.4,Ó Cofaigh Colm4,Roberts David H.4ORCID

Affiliation:

1. School of Biological and Environmental Sciences Liverpool John Moores University Liverpool UK

2. Department of Geography The University of Manchester Manchester UK

3. School of Geosciences University of Aberdeen Aberdeen UK

4. Department of Geography Durham University Durham UK

5. British Antarctic Survey Natural Environment Research Council Cambridge UK

Abstract

AbstractUnderstanding ice stream dynamics over decadal to millennial timescales is crucial for improving numerical model projections of ice sheet behaviour and future ice loss. In marine‐terminating settings, ice shelves play a critical role in controlling ice‐stream grounding line stability and ice flux to the ocean, but few studies have investigated the terrestrial lateral geomorphological imprint of ice shelves during deglaciation. Here, we document the terrestrial deglacial landsystem of Nioghalvfjerdsfjorden Glacier (79N) in northeast Greenland, following the Last Glacial Maximum, and the margin's lateral transition to a floating ice shelf. High‐elevation areas are influenced by local ice caps and display autochthonous to allochthonous blockfields that mark the interaction of local ice caps with the ice stream below. A thermal transition from cold‐ to warm‐based ice is denoted by the emplacement of erratics onto allochthonous blockfields. Below ~600 m above sea level (a.s.l.) glacially abraded bedrock surfaces and assemblages of lateral moraines, ‘hummocky’ moraine, fluted terrain, and ice‐contact deltas record the former presence of warm‐based ice and thinning of the grounded ice stream margin through time. In the outer fjord a range of landforms such as ice shelf moraines, dead‐ice topography, and ice marginal glaciofluvial outwash was produced by an ice shelf during deglaciation. Along the mid‐ and inner‐fjord areas this ice shelf signal is absent, suggesting ice shelf disintegration prior to grounding line retreat under tidewater conditions. However, below the marine limit, the geomorphological record along the fjord indicates the expansion of the 79N ice shelf during the Neoglacial, which culminated in the Little Ice Age. This was followed by 20th century recession, with the development of a suite of compressional ice shelf moraines, ice‐marginal fluvioglacial corridors, kame terraces, dead‐ice terrain, and crevasse infill ridges. These mark rapid ice shelf thinning and typify the present‐day ice shelf landsystem in a warming climate.

Funder

Natural Environment Research Council

Publisher

Wiley

Subject

Earth and Planetary Sciences (miscellaneous),Earth-Surface Processes,Geography, Planning and Development

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Geomorphological analysis of the Antinaco‐Los Colorados valley, La Rioja province, Argentina;Earth Surface Processes and Landforms;2024-07-19

2. How can geomorphology facilitate a better understanding of glacier and ice sheet behaviour?;Earth Surface Processes and Landforms;2024-07-02

3. The deglacial history of 79N glacier and the Northeast Greenland Ice Stream;Quaternary Science Reviews;2024-07

4. Glacial landforms—Introduction;Reference Module in Earth Systems and Environmental Sciences;2024

5. Moraine forms and genesis;Reference Module in Earth Systems and Environmental Sciences;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3