PKA/CREB Signaling Triggers Initiation of Endothelial and Hematopoietic Cell Differentiation via Etv2 Induction

Author:

Yamamizu Kohei12,Matsunaga Taichi12,Katayama Shiori12,Kataoka Hiroshi3,Takayama Naoya4,Eto Koji4,Nishikawa Shin-Ichi3,Yamashita Jun K.12

Affiliation:

1. Laboratory of Stem Cell Differentiation, Stem Cell Research Center, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan

2. Department of Cell Growth and Differentiation, Kyoto University, Kyoto, Japan

3. Laboratory for Stem Cell Biology, RIKEN Center for Development Biology, Kobe, Japan

4. Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan

Abstract

Abstract Ets family protein Etv2 (also called ER71 or Etsrp) is a key factor for initiation of vascular and blood development from mesodermal cells. However, regulatory mechanisms and inducing signals for Etv2 expression have been largely unknown. Previously, we revealed that cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling enhanced differentiation of vascular progenitors into endothelial cells (ECs) and hematopoietic cells (HPCs) using an embryonic stem cell (ESC) differentiation system. Here, we show that PKA activation in an earlier differentiation stage can trigger EC/HPC differentiation through Etv2 induction. We found Etv2 was markedly upregulated by PKA activation preceding EC and HPC differentiation. We identified two cAMP response element (CRE) sequences in the Etv2 promoter and 5′-untranslated region and confirmed that CRE-binding protein (CREB) directly binds to the CRE sites and activates Etv2 transcription. Expression of a dominant negative form of CREB completely inhibited PKA-elicited Etv2 expression and induction of EC/HPCs from ESCs. Furthermore, blockade of PKA significantly inhibited Etv2 expression in ex vivo whole-embryo culture using Etv2-Venus knockin mice. These data indicated that PKA/CREB pathway is a critical regulator for the initiation of EC/HPC differentiation via Etv2 transcription. This early-stage molecular linkage between a triggering signal and transcriptional cascades for differentiation would provide novel insights in vascular and blood development and cell fate determination. Disclosure of potential conflicts of interest is found at the end of this article.

Funder

Ministry of Education, Science, Sports and Culture of Japan

Ministry of Health, Labor and Welfare of Japan

Realization of Regenerative Medicine

Japan Society for the Promotion of Science

Japan Heart Foundation Young Investigator's Research Grant

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3