Bayesian detection with feedback for cooperative spectrum sensing in cognitive UAV networks

Author:

Wu Jun1ORCID,Su Mingkun1,Qiao Lei1,Cao Weiwei2

Affiliation:

1. School of Communication Engineering Hangzhou Dianzi University Hangzhou China

2. Key Laboratory of Flight Techniques and Flight Safety CAAC, Civil Aviation Flight University of China Guanghua China

Abstract

AbstractUnmanned aerial vehicles (UAVs) are becoming a popular research topic in applications that do not require human intervention. A variety of applications and devices coexist in the environment where UAVs operate, resulting in a serious spectrum shortage. Therefore, cognitive radio (CR) is a promising solution for opportunistic access to underutilized spectrum bands by the primary user (PU) through cooperative spectrum sensing (CSS) technique. However, the flexible location of UAVs makes CSS inefficient and even difficult to be implemented. In view of this, a cognitive UAV network model consisting of a pair of UAVs which follows a circular flight trajectory to participate in CSS is proposed in a spectrum sensing frame structure. According to the local energy detection, we further propose an optimization problem about the stopping time in a quickest detection paradigm and conduct out Bayesian detection method with feedback to minimize the sensing delay and the false alarm probability by optimizing the stopping time. Moreover, we theoretically derive the optimal threshold pair and prove the optimal stopping time by means of Markov process. At last, a series of numerical simulations are shown to corroborate the proposed Bayesian detection method with feedback, in terms of the false alarm probability, the sensing delay, and achievable throughput. In contrast to the classic Neyman‐Pearson and Bayesian detection methods, the advantage of Bayesian detection method with feedback sensing is presented.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3