Acetaminophen Metabolites on Presentation Following an Acute Acetaminophen Overdose (ATOM‐7)

Author:

Chiew Angela L.123ORCID,Isbister Geoffrey K.34ORCID,Stathakis Paul5,Isoardi Katherine Z.67ORCID,Page Colin67,Ress Kirsty5,Chan Betty S.H.123ORCID,Buckley Nicholas A.38ORCID

Affiliation:

1. Department of Clinical Toxicology Prince of Wales Hospital Randwick New South Wales Australia

2. Faculty of Medicine The University of New South Wales Sydney New South Wales Australia

3. New South Wales Poisons Information Centre Sydney Children's Hospital Sydney New South Wales Australia

4. Department of Clinical Toxicology and Pharmacology, Calvary Mater Newcastle and School of Medical Practice University of Newcastle Callaghan New South Wales Australia

5. NSW Health Pathology Prince of Wales Hospital Randwick New South Wales Australia

6. Clinical Toxicology Unit Princess Alexandra Hospital Brisbane Queensland Australia

7. Queensland Poisons Information Centre Queensland Children's Hospital Brisbane Queensland Australia

8. Discipline of Biomedical Informatics and Digital Health The University of Sydney Sydney New South Wales Australia

Abstract

Acetaminophen (APAP) is commonly taken in overdose and can cause acute liver injury via the toxic metabolite NAPQI formed by cytochrome (CYP) P450 pathway. We aimed to evaluate the concentrations of APAP metabolites on presentation following an acute APAP poisoning and whether these predicted the subsequent onset of hepatotoxicity (peak alanine aminotransferase > 1,000 U/L). The Australian Toxicology Monitoring (ATOM) study is a prospective observational study, recruiting via two poison information centers and four toxicology units. Patients following an acute APAP ingestion presenting < 24 hours post‐ingestion were recruited. Initial samples were analyzed for APAP metabolites, those measured were the nontoxic glucuronide (APAP‐Glu) and sulfate (APAP‐Sul) conjugates and NAPQI (toxic metabolite) conjugates APAP‐cysteine (APAP‐Cys) and APAP‐mercapturate (APAP‐Mer). The primary outcome was hepatotoxicity. In this study, 200 patients were included, with a median ingested dose of 20 g, 191 received acetylcysteine at median time of 5.8 hours post‐ingestion. Twenty‐six patients developed hepatotoxicity, one had hepatotoxicity on arrival (excluded from analysis). Those who developed hepatotoxicity had significantly higher total CYP metabolite concentrations: (36.8 μmol/L interquartile range (IQR): 27.8–51.7 vs. 10.8 μmol/L IQR: 6.9–19.5) and these were a greater proportion of total metabolites (5.4%, IQR: 3.8–7.7) vs. 1.7%, IQR: 1.3–2.6, P < 0.001)]. Furthermore, those who developed hepatotoxicity had lower APAP‐Sul concentrations (49.1 μmol/L, IQR: 24.7–72.2 vs. 78.7 μmol/L, IQR: 53.6–116.4) and lower percentage of APAP‐Sul (6.3%, IQR: 4.6–10.9 vs. 13.1%, IQR, 9.1–20.8, P < 0.001)]. This study found that those who developed hepatotoxicity had higher APAP metabolites derived from CYP pathway and lower sulfation metabolite on presentation. APAP metabolites may be utilized in the future to identify patients who could benefit from increased acetylcysteine or newer adjunct or research therapies.

Funder

National Health and Medical Research Council

Publisher

Wiley

Subject

Pharmacology (medical),Pharmacology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3