Sound absorption properties and mechanism of multi‐layer micro‐perforated nanofiber membrane

Author:

Shao Xiaofei1ORCID,Yan Xiong1ORCID

Affiliation:

1. Key Laboratory of Textile Science and Technology, Ministry of Education College of Textiles, Donghua University Shanghai China

Abstract

AbstractAiming at achieving low‐frequency and broadband sound absorption under the premise of light and thin layers, in this paper, polyvinyl butyral (PVB) nanofiber membranes were micro‐perforated and then combined sequentially to prepare multi‐layer micro‐perforated nanofiber membrane (MPNM) for acoustic noise reduction. It was demonstrated that the multi‐layer MPNM exhibited a high absorption (constantly over 50%) in the frequency of 480–2500 Hz. In addition, the established theoretical model of the sound absorbing coefficient can accurately predict the sound absorption performance of the structure with different layers, which can provide a theoretical foundation for the design of the structure of the nanofibrous membrane acoustic absorber. Based on the proposed acoustic model, the relationships between the absorption properties and the parameters were investigated, and it was found that the effective acoustic absorption frequency range and acoustic absorption coefficient curve of the multi‐layer MPNM were closely related to the size and arrangement of hole diameter, perforation rate, fiber membrane thickness, and cavity depth. Optimization of the structural parameters utilizing algorithms can achieve superior sound absorption performance, with an average absorption coefficient of 0.81 in the frequency of 100–2500 Hz. This study provides a theoretical and experimental basis for the development of low‐frequency sound‐absorbing materials and is of great significance for optimizing the acoustic performance of nanofiber membranes and expanding their applications in various acoustic engineering applications.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3