A combined adaptive entropy‐TOPSIS and model predictive control strategy for mixed loading and delay operations in the reheating furnace

Author:

Yang Zhi12ORCID,Luo Xiaochuan3,Qiao Jinwei12

Affiliation:

1. School of Mechanical & Automotive Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan China

2. Shandong Institute of Mechanical Design and Research Jinan China

3. College of Information Science and Engineering Northeastern University Shenyang China

Abstract

SummaryIn this paper, a combined adaptive entropy‐TOPSIS and model predictive control strategy is proposed to deal with the mixed loading and delay operations in the reheating furnace. Firstly, the mathematical models consistent with the behaviour of the real reheating furnace are built to describe the complicated heat exchange process. Secondly, a dynamical optimization problem for the mixed loading operation and delay operation in the walking beam reheating furnace is obtained. To adjust the weighting factors of the optimization problem in real time, the adaptive entropy‐TOPSIS method is proposed. Then, the rolling horizon approach is applied to solve the proposed optimization problem. Finally, numerical experiments and simulation analysis are undertaken to verify the reliability and accuracy of the proposed strategy. The simulation results demonstrate that the proposed strategy can deal with three typical cases of delays effectively and the control accuracy is successfully improved from 74.79% to 99.17%.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Liaoning Revitalization Talents Program

Publisher

Wiley

Subject

Applied Mathematics,Control and Optimization,Software,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing the efficiency of a gas-fueled reheating furnace of the steelmaking industry: assessment and improvement;Management of Environmental Quality: An International Journal;2024-03-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3