Coexisting Th1 and Th2 cytokines in patients with collagenous gastritis and implications for its pathogenesis

Author:

Liu Qingqing1,Wang Yanping12,Harpaz Noam1

Affiliation:

1. Department of Pathology, Molecular and Cell‐Based Medicine Icahn School of Medicine at Mount Sinai New York New York USA

2. Department of Pathology and Laboratory Medicine Loyola University Health System Maywood Illinois USA

Abstract

AbstractObjectivesCollagenous gastritis (CG) is a rare cause of refractory dyspepsia and anemia that frequently affects children and young adults and whose histological hallmark is chronic mucosal inflammation with a subepithelial collagen band. The etiology remains obscure, and no established treatments exist. We investigated the pathogenesis of CG by determining the expression profiles of genes related to immunity and inflammation in index biopsies.MethodsGastric biopsies from 10 newly diagnosed patients with CG were evaluated using the NanoString nCounter assay. Gastric biopsies from 14 normal individuals served as controls. The gene expression ratios for CG versus controls were determined in pooled samples and confirmed in individual samples by quantitative reverse transcription polymerase chain reaction. The results were compared with previously reported expression data from a cohort of patients with collagenous colitis, a colonic disorder with similar morphology, including subepithelial collagen band.ResultsCG biopsies featured enhanced expression of key genes encoding both Th1 (IFNγ, TNF‐α, IL‐2, IL‐10, IL‐12A, IL‐12B, and IL‐18) and Th2 cytokines (IL‐3, IL‐4, IL‐5, IL‐6, and IL‐13). In contrast, biopsies from patients with CC exhibited upregulated Th1 cytokines only.ConclusionsWe show in this first published gene expression profiling study that CG involves simultaneous upregulation of Th1 and Th2 cytokines. This finding is unique, contrasting with other types of chronic gastritis as well as with collagenous colitis, which shares the presence of a collagen band. Involvement of Th2 immunity in CG would support further investigation of potential dietary, environmental, or allergic factors to guide future therapeutic trials.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3