Convergence of a discretization of the Maxwell–Klein–Gordon equation based on finite element methods and lattice gauge theory

Author:

Christiansen Snorre H.1,Halvorsen Tore G.1,Scheid Claire2ORCID

Affiliation:

1. Department of Mathematics University of Oslo Blindern Oslo Norway

2. Université Côte d'Azur CNRS, Inria, LJAD France

Abstract

AbstractThe Maxwell–Klein–Gordon equations are a set of coupled nonlinear time‐dependent wave equations, used to model the interaction of an electromagnetic field with a particle. The solutions, expressed with a magnetic vector potential, are invariant under gauge transformations. This characteristic implies a constraint on the solution fields that might be broken at the discrete level. In this article, we propose and study a constraint preserving numerical scheme for this set of equations in dimension 2. At the semidiscrete level, we combine conforming Finite Element discretizations with the so‐called Lattice Gauge Theory to design a compatible gauge invariant discretization, leading to preservation of a discrete constraint. Relying on energy techniques and compactness arguments, we establish the convergence of this semidiscrete scheme, without a priori knowledge of the solution. Finally, at the fully discrete level, we propose a compatible explicit time‐integration strategy of leapfrog type. We implement the resulting fully discrete scheme and provide assessment on academic scenarios.

Funder

FP7 Ideas: European Research Council

Publisher

Wiley

Subject

Applied Mathematics,Computational Mathematics,Numerical Analysis,Analysis

Reference33 articles.

1. Finite element approximation to two-dimensional sine-Gordon solitons

2. Whitney forms: A class of finite elements for three‐dimensional computations in electromagnetism;Bossavit A.;IEE Proce‐A‐Sci. Measure. Technol.,1988

3. The Mathematical Theory of Finite Element Methods

4. Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity

5. Numerical methods for Hamiltonian PDEs

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3