Transfer of β‐agonists from animal feed into Tricholoma gambosum through manure

Author:

Han Yunsheng12,Zhan Tengfei1,Zhang Kai1,Zhao Qingyu1,Guo Xiaoqing1,Tang Chaohua1,Zhang Junmin1ORCID

Affiliation:

1. State Key Laboratory of Animal Nutrition and Feeding Institute of Animal Science, Chinese Academy of Agricultural Sciences Beijing China

2. Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs Institute of Feed Research, Chinese Academy of Agricultural Sciences Beijing China

Abstract

AbstractFungi are dependent on animal manure as a cultivation medium and may be vulnerable to feed‐derived β‐agonist contamination. To test whether β‐agonists incorporated in animal feed can transport into fungi through manure, a greenhouse study was conducted with Tricholoma gambosum grown in a culture medium amended with medicated cattle manure. Cattle were orally administrated with a single (ractopamine, 670.0 μg/kg BW/day) or a mixture of β‐agonists (clenbuterol, ractopamine, and salbutamol at the doses of 5.3, 223.3, and 50.0 μg/kg BW/day, respectively) for 28 days. Three batches of T. gambosum were harvested. A liquid chromatography tandem mass spectrometry‐based method was developed to quantify the number of β‐agonists taken up by T. gambosum from animal manure. The analytical recoveries for β‐agonists were between 66.61% and 91.78% with relative standard deviations between 1.70% and 12.18%, and the limit of quantification (LOQ) was 0.3 ng/g. The ractopamine residues in T. gambosum from batch 1 were 1.3 ng/g and were below the LOQ in batches 2 and 3 in the single treatment group. In the mixed treatment group, ractopamine concentrations were 0.42 and 0.50 ng/g in batches 1 and 2, respectively, and the salbutamol concentration was 1.94 ng/g in batch 1, while clenbuterol was undetectable in all three batches. These results indicated that the β‐agonists transferred to T. gambosum in trace amounts and presented a limited risk to consumers.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3