The role of seasonal migration in spatial population synchrony

Author:

Martin Ellen C.1ORCID,Hansen Brage Bremset12ORCID,Herfindal Ivar13ORCID,Lee Aline Magdalena13ORCID

Affiliation:

1. Department of Biology, Centre for Biodiversity Dynamics Norwegian University of Science and Technology Trondheim Norway

2. Department of Terrestrial Ecology Norwegian Institute for Nature Research Trondheim Norway

3. The Gjærevoll Centre for Biodiversity Foresight Analyses Norwegian University of Science and Technology Trondheim Norway

Abstract

AbstractSpatially synchronized population dynamics are common in nature, and understanding their causes is key for predicting species persistence. A main driver of synchrony between populations of the same species is shared environmental conditions, which cause populations closer together in space to be more synchronized than populations further from one another. Most theoretical and empirical understanding of this driver considers resident species. For migratory species, however, the degree of spatial autocorrelation in the environment may change across seasons and vary by their geographic location along the migratory route or on a nonbreeding ground, complicating the synchronizing effect of the environment. Migratory species show a variety of different strategies in how they disperse to and aggregate on nonbreeding grounds, ranging from completely shared nonbreeding grounds to multiple different ones. Depending on the sensitivity to environmental conditions off the breeding grounds, we can expect that migration and overwintering strategies will impact the extent and spatial pattern of population synchrony on the breeding grounds. Here, we use spatial population‐dynamic modeling and simulations to investigate the relationship between seasonal environmental autocorrelation and migration characteristics. Our model shows that the effects of environmental autocorrelation experienced off the breeding ground on population synchrony depend on the number and size of nonbreeding grounds, and how populations migrate in relation to neighboring populations. When populations migrated to multiple nonbreeding grounds, spatial population synchrony increased with increasing environmental autocorrelation between nonbreeding grounds. Populations that migrated to the same place as near neighbors had higher synchrony at short distances than populations that migrated randomly. However, synchrony declined less across increasing distances for the random migration strategy. The differences in synchrony between migration strategies were most pronounced when the environmental autocorrelation between nonbreeding grounds was low. These results show the importance of considering migration when studying spatial population synchrony and predicting patterns of synchrony and population viability under global environmental change. Climate change and habitat loss and fragmentation may cause range shifts and changes in migratory strategies, as well as changes in the mean and spatial autocorrelation of the environment, which can alter the scale and patterns observed in spatial population synchrony.

Funder

Norges Forskningsråd

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3