Constrained Bayes in multiplicative area‐level models under the precautionary loss function

Author:

Torkashvand Elaheh1ORCID,Jafari Jozani Mohammad2

Affiliation:

1. College of Public Health The Ohio State University Columbus 43210‐1132 Ohio USA

2. Department of Statistics University of Manitoba Winnipeg Manitoba Canada R3T 2N2

Abstract

AbstractConsider the problem of benchmarking small‐area estimates under multiplicative models with positive parameters. The goal is to propose a loss function that guarantees positive constrained estimates of small‐area parameters in this situation. The weighted precautionary loss function is introduced to solve the problem. Compared with the weighted Kullback–Leibler (KL) loss function, our proposed loss function penalizes underestimation of the small‐area parameters of interest more for small values of parameters. This property is appealing when we estimate disease rates. It tends to give larger estimates of small‐area parameters compared with those obtained under the KL loss function. The hierarchical empirical Bayes and constrained hierarchical empirical Bayes estimates of small‐area parameters and their corresponding risk functions under the new proposed loss function are obtained. The performance of the proposed methods is investigated using simulation studies and a real dataset.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3