Investigation on the leakage resistance of metal‐fiber‐metal pressure vessel coupled with deformation

Author:

Zhang Dechao1,Zhan Lihua12ORCID,Zhao Dongwei3,Zhao Shibo3,Ma Bolin1ORCID,Xiong Bang1,Guo Jinzhan1

Affiliation:

1. Light Alloys Research Institute Central South University Changsha China

2. State Key Laboratory of Precision Manufacturing for Extreme Service Performance Central South University Changsha China

3. Beijing Institute of Astronautical Systems Engineering China Academy of Lauch Vehicle Technology Beijing China

Abstract

AbstractThis work focused on the leakage of the composite pressure vessel with a structure consisting of an aluminum alloy inner liner, a composite winding layer, and an aluminum covering. Through applying the finite element simulation approach and leakage rate test, it was found that the average strain of the winding layer in the lap region at the pressure of 46 MPa is 0.0078. Additionally, the leakage rate of the covering adhesive joint was investigated by considering the deformation, revealing that the leakage rate increases with increasing test pressure. The leakage rate at the lap region with a length of 18 mm is 2.05 × 10−7 Pa·m3/s at 0.0078 strain decreasing by 1.46 and 2.31 times compared to those under 12 and 7 mm lengths, respectively. The leakage rate exhibits a strict inverse correlation with the length of the leakage path under a pressure of 0 MPa. Additionally, when the deformation remains below the critical strain threshold (approximately 0.6%), the relationship between pressure and leakage rate shows a linear positive correlation. When the deformation of the component exceeds the critical strain threshold, the leakage rate of the component is significantly affected by its deformation and an increase in overall deformation results in a greater increase in leakage rate. The relationship between the two exhibits a non‐linear trend. This work provides strong technical support for the leakage assessment of composite pressure vessels.Highlights Deformation of the pressure vessel was analyzed through theoretical and simulation approaches. Establishing the relationship between deformation and pressure in metal–metal lap structures. Leakage analysis for different metal–metal lap lengths and deformation conditions.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3