Diversity of Endophytic Fungi Isolated from the Bark of Ceiba pentandra (L.) Gaertn., (Bombacaceae) and Antibacterial Potential of Secalonic Acid A Produced by Diaporthe searlei EC 321

Author:

Dominique Sagou1,Alex Pakora Gilles1,Christiane Essoh You2,Dodehe Yeo1,Adèle Kacou N'douba3

Affiliation:

1. Biology and Health Laboratory UFR des Biosciences Félix Houphouët-Boigny University 22 BP 582 Abidjan 22 Côte d'Ivoire

2. Department of Biochemistry-Genetics UFR o f Biological Sciences Péléforo Gon Coulibaly University BP 1328 Korhogo Côte d'Ivoire

3. Department of Fundamental Sciences UFR of Medical Sciences BPV 166 Abidjan Côte d'Ivoire

Abstract

AbstractThe objective of this study was to study the diversity of endophytic fungi isolated from Ceiba pentandra and to isolate their bioactive chemical compounds. The methodology used during this study consisted in isolating endophytic fungi from the bark of C. pentandra on Potato Agar. The isolates obtained were identified on the basis of the ITS regions of their ribosomal DNA. Antibacterial screening of the mycelium of endophytic fungi isolated was evaluated against multidrug‐resistant E. coli and S. aureus strains. This screening led to the selection of isolates EC 321 and EC 28 for their ability to effectively inhibit the growth of the bacterial strains tested. EC 321 was grown and fermented on rice medium. Secondary metabolites were extracted with ethyl acetate. From the crude extract, secalonic acid A was isolated and identified by chromatographic and NMR. The in vitro activity of secalonic acid A against the growth of multiresistant bacterial strains was evaluated. Secalonic acid A was active against all multidrug‐resistant bacterial strains E. coli 942, E. coli 4814, S. aureus 931, S. aureus 934, S. aureus MRSA 1872 and K. pneumonia 815 with respective MICs of 18.75; 18.75; 18.75; 4.7; 37.5 and 37.5 μg/mL.

Funder

National Museum of Natural History

Publisher

Wiley

Subject

Molecular Biology,Molecular Medicine,General Chemistry,Biochemistry,General Medicine,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3