Synthesis, Structural Characterization, and Biological Activities of 1,3,4‐ Thiadiazole Derivatives Containing Sulfonylpiperazine Structures

Author:

Liu You‐hua1,Wang Fa‐li1,Ren Xiao‐li1,Li Chang‐kun1,Jin Lin‐hong1,Zhou Xia1ORCID

Affiliation:

1. National Key Laboratory of Green Pesticide Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China

Abstract

AbstractTo develop novel bacterial biofilm inhibiting agents, a series of 1,3,4‐thiadiazole derivatives containing sulfonylpiperazine structures were designed, synthesized, and characterized using 1H nuclear magnetic resonance (1H NMR), 13C nuclear magnetic resonance (13C NMR), and high‐resolution mass spectrometry. Meanwhile, their biological activities were evaluated, and the ensuing structure–activity relationships were discussed. The bioassay results showed the substantial antimicrobial efficacy exhibited by most of the compounds. Among them, compound A24 demonstrated a strong efficacy with an EC50 value of 7.8 μg/mL in vitro against the Xanthomonas oryzae pv. oryzicola (Xoc) pathogen, surpassing commercial agents thiodiazole copper (31.8 μg/mL) and bismerthiazol (43.3 μg/mL). Mechanistic investigations into its anti‐Xoc properties revealed that compound A24 operates by increasing the permeability of bacterial cell membranes, inhibiting biofilm formation and cell motility, and inducing morphological changes in bacterial cells. Importantly, in vivo tests showed its excellent protective and curative effects on rice bacterial leaf streak. Besides, molecular docking showed that the hydrophobic effect and hydrogen‐bond interactions are key factors between the binding of A24 and AvrRxo1‐ORF1. Therefore, these results suggest the utilization of 1,3,4‐thiadiazole derivatives containing sulfonylpiperazine structures as a bacterial biofilm inhibiting agent, warranting further exploration in the realm of agrochemical development.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3