Monoubiquitinated H2B, a Main Chromatin Target of Formaldehyde, Is Important for S‐Phase Checkpoint Signaling and Genome Stability

Author:

Mishra Sasmita1,Krawic Casey1,Luczak Michal W.2,Zhitkovich Anatoly1ORCID

Affiliation:

1. Department Pathology and Laboratory Medicine Brown University Providence Rhode Island USA

2. Unlocked Labs Laramie Wyoming USA

Abstract

ABSTRACTFormaldehyde (FA) is a human carcinogen with ubiquitous environmental exposures and significant endogenous formation. Genotoxic activity of FA stems from its reactivity with DNA‐NH2 groups. Histone lysines are another source of aldehyde‐reactive amino groups in chromatin, however, chromatin/histone damage responses to FA and their biological significance are poorly understood. We examined histone posttranslational modifications in FA‐treated human lung cells and found that the majority of the most prominent small lysine modifications associated with active or inactive chromatin were unchanged. FA moderately decreased H3K9 and H3K27 acetylation and H2A‐K119 monoubiquitination but caused surprisingly severe losses of H2B‐K120 monoubiquitination, especially in primary and stem‐like cells. H2Aub1 decreases reflected its slower ubiquitination linked to a lower ubiquitin availability due to K48‐polyubiquitination of FA‐damaged proteins. Depletion of H2Bub1 resulted from its rapid deubiquitination in part by ATXN7L3‐associated deubiquitinases and was independent on DNA damage signaling, indicating a direct chromatin damage response. Manipulations of H2Bub1 abundance showed that it was important for robust ATM and ATR signaling, efficient S‐phase checkpoint, and suppression of mitotic transmission of unreplicated DNA and formation of micronuclei. Our findings identified H2B deubiquitination as a major FA‐induced chromatin damage response that regulates S‐phase checkpoint signaling and genome stability.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3