Injection molding of biodegradable polyester blends filled with mineral and sustainable fillers: Performance evaluation

Author:

McNeill Dayna Colleen12,Pal Akhilesh Kumar1ORCID,Mohanty Amar K.12ORCID,Misra Manjusri12ORCID

Affiliation:

1. Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building University of Guelph Guelph Ontario Canada

2. School of Engineering, Thornbrough Building University of Guelph Guelph Ontario Canada

Abstract

AbstractThis research focuses on the melt processing of biocomposites from a biodegradable polymer blend mixed with hybrid fillers through injection molding technique. An optimized blend ratio (60/40 wt%) poly(butylene succinate‐co‐butylene adipate) (PBSA) and poly(butylene adipate‐co‐terephthalate) (PBAT) demonstrated promising results after blending with a mixture of walnut shell powder (WSP), corn starch and talc in various proportions for use in rigid packaging. The addition of hybrid fillers (i) 10% WSP with 15% talc and (ii) 5% WSP with 5% starch and 15% talc to the polymer blend (60%PBSA/40%PBAT) improved tensile modulus (160% and 162%, respectively) and flexural modulus (147% and 153%, respectively) because of the dispersion of stiffer talc and WSP. Following the addition of fillers, tensile strength of the composites decreased. However, flexural strength improved significantly after filler introduction because of better stress transfer ability. Rheological analysis of filled composites with starch or WSP (25%) depicted similar characteristics of the polymer blend, indicating lower viscosity than hybrid composites. The abundant hydroxyl groups in starch explained the increased water absorption and decreased contact angle compared with other composites. This research's novelty encompasses utilizing low‐cost biomasses with mineral filler into an under‐researched biodegradable polymer blend suitable for single‐use rigid packaging applications.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3