The utility of next‐generation sequencing in challenging liver FNA biopsies

Author:

Balitzer Dana J.1,Greenland Nancy Y.1ORCID

Affiliation:

1. Department of Pathology University of California San Francisco San Francisco California USA

Abstract

AbstractBackgroundFine‐needle aspiration (FNA) biopsy is increasingly used for the diagnosis of hepatocellular masses. Because distinguishing well differentiated hepatocellular carcinoma (HCC) from other well differentiated hepatocellular lesions (e.g., large regenerative nodules or focal nodular hyperplasia) requires an assessment of architectural features, this may be challenging on FNA when intact tissue fragments are not sampled. Poorly differentiated HCC and intrahepatic cholangiocarcinoma (ICC) may exhibit overlapping pathologic features. Molecular testing can be helpful, because mutations in TERT promoter and CTNNB1 (β‐catenin) are characteristic of HCC, whereas mutations in BAP1, IDH1/IDH2, and PBRM1 may favor ICC. The goal of this study was to assess the role of next‐generation sequencing (NGS) in further subclassifying indeterminate liver lesions sampled by FNA.MethodsA retrospective review of liver cytology cases with NGS on cell block material was performed. Age, radiologic features, background hepatic disease and treatment, outcome, and NGS data were obtained from the electronic medical record.ResultsTwelve FNA biopsies that had cell blocks from clinically suspected primary hepatic masses were identified. The presence of a TERT promoter mutation supported a diagnosis of HCC for one well differentiated neoplasm. For three patients, the presence of mutations, such as IDH1, CDKN2A/CDKN2B, and BRAF, supported a diagnosis of ICC. Of the eight poorly differentiated carcinomas, NGS helped refine the diagnosis in six of eight cases, with one HCC, three ICCs, and two that had combined HCC‐ICC, with two cases remaining unclassified.ConclusionsMolecular diagnostics can be helpful to distinguish HCC and ICC on FNA specimens, although a subset of primary hepatic tumors may remain unclassifiable.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3