Targeting RAC1 reactivates pyroptosis to reverse paclitaxel resistance in ovarian cancer by suppressing P21‐activated kinase 4

Author:

Wu Jiangchun12ORCID,Wu Yong12,Zhao Tianyi12,Wang Xiangwei13,Guo Qinhao12,Wang Simin12,Chen Siyu12,Ju Xingzhu12,Li Jin12,Wu Xiaohua12,Zheng Zhong12

Affiliation:

1. Department of Gynaecologic Oncology Fudan University Shanghai Cancer Center, Fudan University Shanghai China

2. Department of Oncology, Shanghai Medical College Fudan University Shanghai China

3. Department of Nuclear Medicine Fudan University Shanghai Cancer Center Shanghai China

Abstract

AbstractPyroptosis may play an important role in the resistance of ovarian cancer (OC) to chemotherapy. However, the mechanism by which pyroptosis modulation can attenuate chemotherapy resistance has not been comprehensively studied in OC. Here, we demonstrated that RAS‐associated C3 botulinum toxin substrate 1 (RAC1) is highly expressed in OC and is negatively correlated with patient outcomes. Through cell function tests and in vivo tumor formation tests, we found that RAC1 can promote tumor growth by mediating paclitaxel (PTX) resistance. RAC1 can mediate OC progression by inhibiting pyroptosis, as evidenced by high‐throughput automated confocal imaging, the release of lactate dehydrogenase (LDH), the expression of the inflammatory cytokines IL‐1β/IL‐18 and the nucleotide oligomerization domain‐like receptor family pyrin domain‐containing 3 (NLRP3) inflammasome. Mechanically, RNA‐seq, gene set enrichment analysis (GSEA), coimmunoprecipitation (Co‐IP), mass spectrometry (MS), and ubiquitination tests further confirmed that RAC1 inhibits caspase‐1/gasdermin D (GSDMD)‐mediated canonical pyroptosis through the P21‐activated kinase 4 (PAK4)/mitogen‐activated protein kinase (MAPK) pathway, thereby promoting PTX resistance in OC cells. Finally, the whole molecular pathway was verified by the results of in vivo drug combination tests, clinical specimen detection and the prognosis. In summary, our results suggest that the combination of RAC1 inhibitors with PTX can reverse PTX resistance by inducing pyroptosis through the PAK4/MAPK pathway.

Funder

China Primary Health Care Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3