Preparation of calcium aluminate and spinel by hydrolysis and calcination from secondary aluminum dross

Author:

Zhao Yuqin12,Zuo Zhengping2,Li Zhanbing2,Zhang Jianbo2,Wu Wen Fen2,Ma Wei Ping2,Zhu Ganyu2,Li Shaopeng2ORCID,Wang Fei1

Affiliation:

1. Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education Tianjin 300130 China

2. National Engineering Research Center of Green Recycling for Strategic Metal Resources, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 China

Abstract

AbstractThe direct extraction of alumina from secondary aluminum dross (SAD), which is a dangerous solid waste, is difficult. Moreover, this process easily produces a large amount of solid waste residue, which is not easily utilized. In this paper, a new green process was developed to prepare calcium aluminate and Mg‐Al spinel from SAD by hydrolysis–calcification roasting. The effects of calcium oxide (CaO) content, sintering temperature, and holding time on the properties of calcium aluminate were investigated by single‐factor experiments. The phase transformation mechanism of calcium aluminate was studied by thermodynamic analysis, X‐ray diffraction analysis, X‐ray fluorescence spectroscopy, and scanning electron microscopy. Under the optimal conditions (Ca/Al molar ratio of 0.8, sintering temperature of 1300°C, and holding time of 2 h), the main calcium aluminate phases are CaAl2O4 and Ca2Al2SiO7, the soluble alumina content of the calcium aluminate sample is 49.71 wt.%, and the main phases of the acid‐insoluble residue are Mg‐Al spinel and a very small amount of CaTiO3. The Ca/Al ratio is the key factor affecting the calcium aluminate phase—with increasing Ca/Al ratio, the calcium aluminate phase is transformed from CaAl4O7 to CaAl2O4 and eventually to Ca12Al14O33, and the Si‐containing phase changes from Ca2Al2SiO7 to CaSiO4.

Publisher

Wiley

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3