EVA copolymer loaded with PAni/CNT/GNP hybrids: A flexible and lightweight material with high microwave absorption

Author:

Calheiros Souto Loan F.1,Soares Bluma G.12ORCID

Affiliation:

1. Centro de Tecnologia Universidade Federal do Rio de Janeiro, COPPE‐PEMM Rio de Janeiro Brazil

2. Centro de Tecnologia Universidade Federal do Rio de Janeiro, Instituto de Macromoléculas Rio de Janeiro Brazil

Abstract

AbstractMicrowave‐absorbing materials are widely used for electromagnetic interference shielding and stealth technology. However, most existing materials are heavy, rigid, and expensive, limiting their practical applications. Therefore, there is a need to develop new materials that are flexible, lightweight, and cost effective. This study aimed to synthesize and characterize a novel ternary composite material based on polyaniline (PAni), carbon nanotubes (CNTs), and graphene nanoplatelets (GNPs) in an ethylene‐vinyl acetate (EVA) copolymer matrix. PAni‐based ternary composites were prepared by in situ polymerization of aniline in toluene dispersion of CNT/GNP hybrids and EVA. The microwave absorption properties were evaluated using a vector network analyzer in the frequency range of 8.2–18 GHz. The presence of as little as 0.8 wt% of CNT/GNP hybrid with appropriate mass ratio increased the conductivity by more than four orders of magnitude compared to the EVA@PAni blend. The minimum reflection loss corresponded to −40.55 dB at 16.31 GHz for the system containing CNT/GNP = 0.3:0.7, whereas those with CNT/GNP = 0.0:1.0 and 0.7:0.3 presented the widest effective absorption bandwidths (RL < −10 dB), covering almost the entire Ku‐band. Due to the excellent flexibility, low weight, and high microwave absorption performance, these composites are potential candidates for microwave absorption applications.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3