Review of aging mechanisms, mechanical properties, and prediction models of fiber‐reinforced composites in natural environments

Author:

Qin Guofeng1ORCID,Fan Qiuhan1,Mi Peiwen12,Li Ming1,Mu Wenlong3,Na Jingxin4

Affiliation:

1. Teachers College for Vocational and Technical Education Guangxi Normal University Guilin China

2. School of Automotive Engineering Wuhan University of Technology Wuhan China

3. College of Electrical and Mechanical Engineering Henan Agricultural University Zhengzhou China

4. College of Automotive Engineering Jilin University Changchun China

Abstract

AbstractFiber‐reinforced composites are widely used in civil engineering, aerospace, automotive, and medical sectors. However, these composites undergo aging due to factors such as temperature, humidity, load, and so on, during their usage. As a result, their performance deteriorates, and predicting their durability under real service conditions is a significant challenge. In order to better understand the durability of fiber‐reinforced composites, this article summarizes their microscopic aging mechanism under natural aging conditions and analyzes the changing rules of tensile, bending, and shear properties of composites under seven typical climate types, including tropical desert climate, temperate continental climate, temperate oceanic climate, Mediterranean climate, seasonal climate, tropical rainforest climate, and seawater immersion. This article reviews various durability prediction models, such as the Arrhenius model, prediction models based on residual modulus of elasticity and residual strength, and median strength regression analysis. To enhance the accuracy of aging life prediction during the natural aging process of composites, it is important to consider the influence of loads under real service conditions, incorporate different climatic types, utilize comprehensive mechanical property indices, establish an equivalent conversion relationship between natural aging and accelerated aging, and create a database with unified test standards.Highlights The aging mechanisms of FRP after exposure in natural aging environments are discussed. The tensile, bending, and shear properties of FRP after exposure under seven climate types are discussed. The predictive models are proposed for the FRP used in natural aging. The future research needs are proposed for the FRP used in natural aging.

Funder

National Natural Science Foundation of China

Henan Provincial Science and Technology Research Project

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3