Affiliation:
1. Department of Chemical and Biomolecular Engineering Sogang University Mapo‐gu Seoul Republic of Korea
2. Division of Chemical Engineering and Materials Science Ewha Womans University Seodaemun‐gu Seoul Republic of Korea
Abstract
AbstractShake flask cultivation, a cornerstone in bioprocess research encounters limitations in supplying sufficient oxygen and exchanging gases, restricting its accuracy in assessing microbial growth and metabolic activity. In this communication, we introduce an innovative gas supply apparatus that harnesses the rotational motion of a shaking incubator to facilitate continuous air delivery, effectively overcoming these limitations. We measured the mass transfer coefficient (kLa) and conducted batch cultures of Corynebacterium glutamicum H36LsGAD using various working volumes to assess its performance. Results demonstrated that the gas supply apparatus significantly outperforms conventional silicone stoppers regarding oxygen delivery, with kLa values of 2531.7 h−1 compared to 20.25 h−1 at 230 rpm. Moreover, in batch cultures, the gas supply apparatus enabled substantial improvements in microbial growth, maintaining exponential growth even at larger working volumes. Compared to the existing system, an increase in final cell mass by a factor of 3.4‐fold was observed when utilizing 20% of the flask's volume, and a remarkable 9‐fold increase was achieved when using 60%. Furthermore, the gas supply apparatus ensured consistent oxygen supply and efficient gas exchange within the flask, overcoming challenges associated with low working volumes. This approach offers a simple yet effective solution to enhance gas transfer in shake flask cultivation, bridging the gap between laboratory‐scale experiments and industrial fermenters. Its broad applicability holds promise for advancing research in bioprocess optimization and scale‐up endeavors.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献