New 2.5‐Dtwin screw extruder model for the feed section of a co‐rotating twin screw extruder with comparisons to data

Author:

Campbell Gregory A.1ORCID,Wetzel Mark D.2,Andersen Paul3,Golba Joseph4

Affiliation:

1. Castle Research Associates Jonesport Maine USA

2. Florence Oregon USA

3. Coperion Warwick New York USA

4. Rex Tech Consultancy LLC Avon Lake Ohio USA

Abstract

AbstractMany polymers are processed and compounded in co‐rotating, fully intermeshing twin screw (TS) extruders. The typical compounding process consists of multiple unit operations including feed introduction, conveying solids away from the feed zone, transitioning from the conveying zone to the kneading block (KB) melting zone, melting, a downstream feed zone, a downstream mixing zone, a devolatilization region, and a pressure generating discharge section. This paper will focus on the first of these unit operations, the conveying of pellets in a partially filled screw leading to compaction and pressure generation in the full screw channel prior to the KB melting zone. Mechanisms for pellet conveying, for heating the polymer pellets, and for developing pressure at the end of the solids conveying screw elements are first presented for low‐density polyethylene (LDPE). The predictions of the model are also compared with a classical set of experiments on high‐density polyethylene (HDPE). The model is then tested using published characteristics of a polyamide‐type polymer. This paper focuses on the physics and engineering concepts that are inherent in the feed section of the TS extruder where the pressure is calculated using the friction of the polymer pellets. The effects of throughput,Q, at a constant rotation speed,N, are examined. Low and highQ/Nratios have significantly different axial pressure profiles.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry,Materials Chemistry,Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3