Transparent Multilayer Acrylic Composites Reinforced with Poly(Acrylated Urethane) Filled Low Grammage Bacterial Cellulose Nanopaper

Author:

Wloch Daniela1,Herrera Natalia1,Lee Koon‐Yang12ORCID

Affiliation:

1. Department of Aeronautics, Imperial College London South Kensington Campus London SW7 2AZ UK

2. Institute for Molecular Science and Engineering Imperial College London London SW7 2AZ UK

Abstract

AbstractCellulose nanopaper is a material structure that possesses high mechanical performance and is widely regarded as a promising 2D reinforcement for polymer matrix composites. This work explores the use of low grammage bacterial cellulose (BC) nanopaper as reinforcement for poly(acrylated urethane) interlayer adhesive to increase the impact performance of multilayer acrylic composites. The BC nanopaper is impregnated with an acrylated urethane resin and laminated between acrylic sheets to create BC/acrylic composites consisting of one, three, and five layers of BC nanopaper‐reinforced poly(acrylated urethane) interlayer adhesive(s). Both the poly(acrylated urethane)‐filled BC nanopaper interlayer adhesive and the resulting laminated acrylic composites are optically transparent. The incorporation of BC nanopaper into the poly(acrylated urethane) interlayer adhesive improves the tensile modulus by eightfold and the single‐edge notched fracture toughness by 60% compared to neat poly(acrylated urethane). It is also found that using poly(acrylated urethane)‐filled BC nanopaper interlayer adhesive proves beneficial to the impact properties of the resulting laminated acrylic composites. In Charpy impact testing, the impact strength of the multilayer acrylic composites increases by up to 130% compared to the “gold‐standard” impact‐modified monolithic acrylic, with a BC loading of only 1.6 wt%.

Funder

Engineering and Physical Sciences Research Council

U.S. Army Combat Capabilities Development Command Soldier Center

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3