AAPM task group report 273: Recommendations on best practices for AI and machine learning for computer‐aided diagnosis in medical imaging

Author:

Hadjiiski Lubomir1,Cha Kenny2,Chan Heang‐Ping1,Drukker Karen3,Morra Lia4,Näppi Janne J.5,Sahiner Berkman2,Yoshida Hiroyuki5,Chen Quan6,Deserno Thomas M.7,Greenspan Hayit8,Huisman Henkjan9,Huo Zhimin10,Mazurchuk Richard11,Petrick Nicholas2,Regge Daniele1213,Samala Ravi2,Summers Ronald M.14,Suzuki Kenji15,Tourassi Georgia16,Vergara Daniel17,Armato Samuel G.3

Affiliation:

1. Department of Radiology University of Michigan Ann Arbor Michigan USA

2. U.S. Food and Drug Administration Silver Spring Maryland USA

3. Department of Radiology University of Chicago Chicago Illinois USA

4. Department of Control and Computer Engineering Politecnico di Torino Torino Italy

5. 3D Imaging Research Department of Radiology Massachusetts General Hospital and Harvard Medical School Boston Massachusetts USA

6. Department of Radiation Medicine University of Kentucky Lexington Kentucky USA

7. Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School Braunschweig Germany

8. Department of Biomedical Engineering Faculty of Engineering Tel Aviv, Israel & Department of Radiology Ichan School of Medicine Tel Aviv University, Mt Sinai, New York New York USA

9. Radboud Institute for Health Sciences Radboud University Medical Center Nijmegen The Netherlands

10. Tencent America Palo Alto California USA

11. Division of Cancer Prevention National Cancer Institute National Institutes of Health Bethesda Maryland USA

12. Radiology Unit Candiolo Cancer Institute, FPO‐IRCCS Candiolo Italy

13. Department of Surgical Sciences University of Turin Turin Italy

14. Radiology and Imaging Sciences National Institutes of Health Clinical Center Bethesda Maryland USA

15. Institute of Innovative Research Tokyo Institute of Technology Tokyo Japan

16. Oak Ridge National Lab Oak Ridge Tennessee USA

17. Department of Radiology Yale New Haven Hospital New Haven Connecticut USA

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3