Systematic druggable genome‐wide Mendelian randomization identifies therapeutic targets for sarcopenia

Author:

Yin Kang‐Fu12,Chen Ting12,Gu Xiao‐Jing3,Su Wei‐Ming12,Jiang Zheng12,Lu Si‐Jia4,Cao Bei12,Chi Li‐Yi5,Gao Xia6,Chen Yong‐Ping12ORCID

Affiliation:

1. Department of Neurology, West China Hospital Sichuan University Chengdu China

2. Institute of Brain Science and Brain‐Inspired Technology, West China Hospital Sichuan University Chengdu China

3. Mental Health Center, West China Hospital Sichuan University Chengdu China

4. Department of Respiratory The Fourth People's Hospital of Chengdu, Mental Health Center of Chengdu Chengdu China

5. Department of Neurology First Affiliated Hospital of Air Force Military Medical University Xi'an China

6. Department of Geriatrics Dazhou Central Hospital Dazhou China

Abstract

AbstractBackgroundThere are no effective pharmacological treatments for sarcopenia. We aim to identify potential therapeutic targets for sarcopenia by integrating various publicly available datasets.MethodsWe integrated druggable genome data, cis‐eQTL/cis‐pQTL from human blood and skeletal muscle tissue, and GWAS summary data of sarcopenia‐related traits to analyse the potential causal relationships between drug target genes and sarcopenia using the Mendelian Randomization (MR) method. Sensitivity analyses and Bayesian colocalization were employed to validate the causal relationships. We also assessed the side effects or additional indications of the identified drug targets using a phenome‐wide MR (Phe‐MR) approach and investigated actionable drugs for target genes using available databases.ResultsMR analysis identified 17 druggable genes with potential causation to sarcopenia in human blood or skeletal muscle tissue. Six of them (HP, HLA‐DRA, MAP 3K3, MFGE8, COL15A1, and AURKA) were further confirmed by Bayesian colocalization (PPH4 > 90%). The up‐regulation of HP [higher ALM (beta: 0.012, 95% CI: 0.007–0.018, P = 1.2*10−5) and higher grip strength (OR: 0.96, 95% CI: 0.94–0.98, P = 4.2*10−5)], MAP 3K3 [higher ALM (beta: 0.24, 95% CI: 0.21–0.26, P = 1.8*10−94), higher grip strength (OR: 0.82, 95% CI: 0.75–0.90, P = 2.1*10−5), and faster walking pace (beta: 0.03, 95% CI: 0.02–0.05, P = 8.5*10−6)], and MFGE8 [higher ALM (muscle eQTL, beta: 0.09, 95% CI: 0.06–0.11, P = 6.1*10−13; blood pQTL, beta: 0.05, 95% CI: 0.03–0.07, P = 3.8*10−09)], as well as the down‐regulation of HLA‐DRA [lower ALM (beta: ‐0.09, 95% CI: −0.11 to −0.08, P = 5.4*10−36) and lower grip strength (OR: 1.13, 95% CI: 1.07–1.20, P = 1.8*10−5)] and COL15A1 [higher ALM (muscle eQTL, beta: ‐0.07, 95% CI: −0.10 to −0.04, P = 3.4*10−07; blood pQTL, beta: ‐0.05, 95% CI: −0.06 to −0.03, P = 1.6*10−07)], decreased the risk of sarcopenia. AURKA in blood (beta: ‐0.16, 95% CI: −0.22 to −0.09, P = 2.1*10−06) and skeletal muscle (beta: 0.03, 95% CI: 0.02 to 0.05, P = 5.3*10−05) tissues showed an inverse relationship with sarcopenia risk. The Phe‐MR indicated that the six potential therapeutic targets for sarcopenia had no significant adverse effects. Drug repurposing analysis supported zinc supplementation and collagenase clostridium histolyticum might be potential therapeutics for sarcopenia by activating HP and inhibiting COL15A1, respectively.ConclusionsOur research indicated MAP 3K3, MFGE8, COL15A1, HP, and HLA‐DRA may serve as promising targets for sarcopenia, while the effectiveness of zinc supplementation and collagenase clostridium histolyticum for sarcopenia requires further validation.

Funder

National Key Research and Development Program of China

Innovative Research Group Project of the National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3