Wavelet scattering networks in deep learning for discovering protein markers in a cohort of Swedish rectal cancer patients

Author:

Pham Tuan D.1ORCID,Sun Xiao‐Feng2

Affiliation:

1. Barts and The London School of Medicine and Dentistry Queen Mary University of London Turner Street London UK

2. Division of Oncology Department of Biomedical and Clinical Sciences Linkoping University Linkoping Sweden

Abstract

AbstractBackgroundCancer biomarkers play a pivotal role in the diagnosis, prognosis, and treatment response prediction of the disease. In this study, we analyzed the expression levels of RhoB and DNp73 proteins in rectal cancer, as captured in immunohistochemical images, to predict the 5‐year survival time of two patient groups: one with preoperative radiotherapy and one without.MethodsThe utilization of deep convolutional neural networks in medical research, particularly in clinical cancer studies, has been gaining substantial attention. This success primarily stems from their ability to extract intricate image features that prove invaluable in machine learning. Another innovative method for extracting features at multiple levels is the wavelet‐scattering network. Our study combines the strengths of these two convolution‐based approaches to robustly extract image features related to protein expression.ResultsThe efficacy of our approach was evaluated across various tissue types, including tumor, biopsy, metastasis, and adjacent normal tissue. Statistical assessments demonstrated exceptional performance across a range of metrics, including prediction accuracy, classification accuracy, precision, and the area under the receiver operating characteristic curve.ConclusionThese results underscore the potential of dual convolutional learning to assist clinical researchers in the timely validation and discovery of cancer biomarkers.

Publisher

Wiley

Subject

Cancer Research,Radiology, Nuclear Medicine and imaging,Oncology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3