Affiliation:
1. College of Plant Protection Henan Agricultural University Zhengzhou China
2. Henan Key Laboratory of Creation and Application of New Pesticide Henan Agricultural University Zhengzhou China
3. Henan Research Center of Green Pesticide Engineering and Technology Henan Agricultural University Zhengzhou China
Abstract
AbstractBACKGROUNDSclerotium rolfsii is a destructive soil‐borne fungal pathogen which is distributed worldwide. In previous study, the succinate dehydrogenase inhibitor (SDHI) fungicide benzovindiflupyr has been identified for its great antifungal activity against Sclerotium rolfsii. This study is aimed to investigate the resistance risk and mechanism of benzovindiflupyr in Sclerotium rolfsii.RESULTSEight stable benzovindiflupyr‐resistant isolates were generated by fungicide adaptation. Although the obtained eight resistant isolates have a stronger pathogenicity than the parental sensitive isolate, they have a fitness penalty in the mycelial growth and sclerotia formation compared to the parental isolate. A positive cross‐resistance existed in the resistant isolates between benzovindiflupyr and thifluzamide, carboxin, boscalid and isopyrazam. Three‐point mutations, including SdhBN180D, SdhCQ68E and SdhDH103Y, were identified in the benzovindiflupyr‐resistant isolates. However, molecular docking analysis indicated that only SdhDH103Y could influence the sensitivity of Sclerotium rolfsii to benzovindiflupyr. After mycelial co‐incubation of resistant isolates and the sensitive isolate, resistance genes may be transmitted to the sensitive isolate. The in vivo efficacy of benzovindiflupyr and thifluzamide against benzovindiflupyr‐resistant isolates was a little lower than that against the sensitive isolate but with no significant difference.CONCLUSIONThe results suggested a low to medium resistance risk of Sclerotium rolfsii to benzovindiflupyr. However, once resistance occurs, it is possible to spread in the population of Sclerotium rolfsii. This study is helpful to understanding the risk and mechanism of resistance to benzovindiflupyr in multinucleate pathogens such as Sclerotium rolfsii. © 2024 Society of Chemical Industry.
Funder
National Natural Science Foundation of China
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献