Development of novel intrusion detection in Internet of Things using improved dart game optimizer‐derived optimal cascaded ensemble learning

Author:

Shali A.1,Chinnasamy A.1,Selvakumari P.2

Affiliation:

1. Department of Computer Science and Engineering Sri Sai Ram Engineering College Chennai India

2. Computer Science and Engineering Chennai Institute of Technology Chennai India

Abstract

AbstractBackground of the StudyInternet of things (IoT) industry has accelerated its development with the support of advanced information technology and economic expansion. A complete industrial foundation includes software, chips, electronic components, IoT services, integrated systems, machinery, and telecom operators, which the gradual improvement in the IoT industry system has formulated. As the exponential growth of IoT devices increases, the attack surface available to cybercriminals enables them to carry out potentially more damaging operations. As a result, the security sector has witnessed a rise in cyberattacks. Hackers use several methods to copy and modify the information in the IoT environment. Machine learning techniques are used by the intrusion detection (ID) model to determine and categorize attacks in IoT networks.ObjectivesThus, this study explores the ID system with the heuristic‐assisted deep learning approaches for effectively detect the attacks in the IoT. At first, the IoT data are garnered in benchmark resources. Then, the gathered data is preprocessed to perform data cleaning. Next, the data is transformed and fed to the feature extraction stage. The feature extraction is performed with the help of one‐dimensional convolutional neural network (1D‐CNN), where the features are extracted from the target‐based pooling layer. Then, these attained deep features are fed to the ID phase, where the cascaded ensemble learning (CEL) approach is adopted for detecting the intrusions. Here, the hyperparameter tuning is done with a new suggested improved darts game optimizer (IDGO) algorithm. Here, the main objective of the developed algorithm helps to maximize accuracy in ID.FindingsThroughout the experimental findings, the developed model provides 86% of accuracy. Thus, the finding of the developed model shows less detecting time and higher detection efficiency.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3