The value of instream stable water isotope and nitrate concentration data for calibrating a travel time‐based water quality model

Author:

Borriero A.1,Musolff A.1,Kumar R.2,Fleckenstein J. H.13,Lutz S. R.4,Nguyen T. V.1ORCID

Affiliation:

1. Department of Hydrogeology Helmholtz‐Centre for Environmental Research—UFZ Leipzig Germany

2. Department of Computational Hydrosystems Helmholtz‐Centre for Environmental Research—UFZ Leipzig Germany

3. Bayreuth Centre of Ecology and Environmental Research, University of Bayreuth Bayreuth Germany

4. Copernicus Institute of Sustainable Development, Department of Environmental Sciences Utrecht University Utrecht The Netherlands

Abstract

AbstractTransit time‐based water quality models using StorAge Selection (SAS) functions are crucial for nitrate (NO3) management. However, relying solely on instream NO3 concentration for model calibration can result in poor parameter identifiability. This is due to the interaction, or correlation, between transport parameters, such as SAS function parameters, and denitrification rate, which challenges accurate parameters identification and description of catchment‐scale hydrological processes. To tackle this issue, we conducted three Monte‐Carlo experiments for a German mesoscale catchment by calibrating a SAS‐based model with daily instream NO3 concentrations (Experiment 1), monthly instream stable water isotopes (e.g. δ18O) (Experiment 2) and both datasets (Experiment 3). Our findings revealed comparable ranges of SAS transport parameters and median water transit times (TT50) across the experiments. This suggests that, despite their distinct reactive or conservative nature, and sampling strategies, the NO3 and δ18O time series offer similar information for calibration. However, the absolute values of transport parameters and TT50 time series, as well as the degree of parameter interaction differed. Experiment 1 showed greater interaction between certain transport parameters and denitrification rate, leading to greater equifinality. Conversely, Experiment 3 yielded reduced parameters interaction, which enhanced transport parameters identifiability and decreased uncertainty in TT50 time series. Hence, even a modest effort to incorporate only monthly δ18O values in model calibration for highly frequent NO3, improved the description of hydrological transport. This study showcased the value of combining NO3 and δ18O model results to improve transport parameter identifiability and model robustness, which ultimately enhances NO3 management strategies.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3