Resource instability undermines predictable plasticity‐mediated morphological responses to diet in a postglacial fish

Author:

Koene J. Peter1ORCID,Adams Colin E.1ORCID

Affiliation:

1. Scottish Centre for Ecology and the Natural Environment (SCENE), School of Biodiversity, One Health and Veterinary Medicine University of Glasgow Glasgow UK

Abstract

AbstractPhenotypic plasticity has been presented as a potential rapid‐response mechanism with which organisms may confront swift environmental change and increasing instability. Among the many difficulties potentially facing freshwater fishes in recently glaciated ecosystems is that of invertebrate prey communities becoming significantly altered in species composition and relative abundance. To test how the rapidity of diet resource change may affect phenotypic responses during development, we subjected juvenile brown trout to pelagic‐type or littoral‐type diets that alternated either daily, sub‐seasonally, or not at all over a single growth season. The proportional intake of each diet was traced with stable isotopes of carbon and nitrogen and modelled with morphometric data on head and jaw shape. While those trout exposed to a single diet type developed predictable morphologies associated with pelagic or littoral foragers, those raised on alternating diets expressed more unpredictable morphologies. With extreme (daily) or even sub‐seasonal (monthly) resource instability, the association of diet type with the phenotype was overwhelmed, calling into question the efficacy of plasticity as a means of adaptation to environments with rapidly fluctuating prey resources.

Funder

Fisheries Society of the British Isles

Publisher

Wiley

Reference80 articles.

1. Adams D. C. Collyer M. L. &Kaliontzopoulou A.(2019).Geomorph: software for geometric morphometric analysis. R package version 3.1.0.https://cran.r‐project.org/package=geomorph

2. Effects of diet‐induced resource polymorphism on performance in Arctic charr (Salvelinus alpinus);Andersson J.;Evolutionary Ecology Research,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3