A test of balanced fitness limitations theory: Pollen limitation in plants

Author:

Rosenheim Jay A.1ORCID,Williams Neal M.1ORCID,Rapp Joshua M.1ORCID,Schreiber Sebastian J.2ORCID

Affiliation:

1. Department of Entomology and Nematology University of California Davis Davis California USA

2. Department of Evolution and Ecology University of California Davis Davis California USA

Abstract

AbstractWhen reproductive success is determined by the relative availabilities of a series of essential, non‐substitutable resources, the theory of balanced fitness limitations predicts that the cost of harvesting a particular resource shapes the likelihood that a shortfall of that resource will constrain realized fitness. Plant reproduction through female function offers a special opportunity to test this theory; essential resources in this context include, first, the pollen received from pollinators or abiotic vectors that is used to fertilize ovules, and, second, the resources needed to provision the developing seeds and fruit. For many plants realized reproductive success through female function can be readily quantified in the field, and one key potential constraint on fitness, pollen limitation, can be assessed experimentally by manually supplementing pollen receipt. We assembled a comparative dataset of pollen limitation using only studies that supplement pollen to all flowers produced over the plant's reproductive lifespan. Pre‐ and post‐pollination costs were estimated using the weight of flowers and fruits and estimates of fruit set. Consistent with expectations, we find self‐incompatible plants make greater pre‐pollination investments and experience greater pollen limitation. However, contrary to theoretical expectations, when variation due to self‐compatibility is accounted for by including self‐compatibility in the statistical model as a covariate, we find no support for the prediction that plants that invest more heavily in pre‐pollination costs are subject to greater pollen limitation. Strong within‐species, between‐population variation in the expression of pollen limitation makes the quantification of mean pollen limitation difficult. We urge plant ecologists to conduct more studies of pollen limitation using whole‐plant pollen supplementation to produce a richer comparative dataset that would support a more robust test of the balanced limitations hypothesis.

Funder

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3