Charging Properties of Electrospun Poly(l‐lactic acid) Submicrofiber Mat and Its Electrical Applications

Author:

Takagaki Kenichi1,Sakai Heisuke2ORCID,Nobeshima Taiki3ORCID,Uemura Sei4ORCID,Kaneko Mitsuo1,Ishii Yuya1ORCID

Affiliation:

1. Department of Advanced Fibro‐Science Kyoto Institute of Technology 606‐8585 Kyoto Japan

2. School of Science and Engineering Kokushikan University 154–8515 Tokyo Japan

3. Human Augmentation Research Center National Institute of Advanced Industrial Science and Technology 277‐0882 Tiba Japan

4. AIST Kyushu National Institute of Advanced Industrial Science and Technology 841‐0052 Saga Japan

Abstract

Wearable pressure sensors have attracted significant attention owing to their potential applications in health monitoring and connectivity to internet‐based apps. Polymers such as poly(vinylidene fluoride) have been used in sensors. However, being petroleum‐derived materials, they do not decompose and remain in the soil when disposed. Poly(l‐lactic acid) (PLLA) is a promising material because of its biodegradable nature and its derivation from plant‐based materials. In addition, the electrospun PLLA fiber mat contains real charges and exhibits electromechanical properties. However, the detailed charging properties of the PLLA fiber mats remain unclear. Herein, the charge distribution of these fiber mat is presented, and a charging model of the fiber mat and a numerical model of the output charges from the fiber mats with electrodes are proposed. Additionally, the retention properties of the stored charges are determined using surface potential measurements at different temperatures. In addition, a self‐power‐generating touch sensor and mask‐type sensor are developed using biodegradable materials produced from biomass. These studies contribute to the improvement in the charge properties of PLLA fiber mats and the resulting wearable biodegradable sensors.

Funder

Japan Society for the Promotion of Science

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3