In Situ Growth Engineering on 2D MXenes for Next‐Generation Rechargeable Batteries

Author:

Wei Chuanliang1,Xi Baojuan1,Wang Peng1,Wang Zhengran1,An Xuguang2,Tian Kangdong1,Feng Jinkui1,Xiong Shenglin1ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering School of Materials Science and Engineering Shandong University Jinan 250100 P. R. China

2. School of Mechanical Engineering Chengdu University Chengdu 610106 P. R. China

Abstract

MXene is an emerging 2D material and shows large potential as a substrate for in situ growth of functional materials due to its merits such as large surface area, abundant nucleation sites, structural diversity, superior dispersion ability, blocking agglomeration of nanomaterials, and rich element/kind compositions. The in situ‐formed MXene‐based composites are largely applied in rechargeable batteries in the past several years by acting as active materials, serving as current collectors, decorating separators, and catalyzing electrochemical process. However, a detailed and systematic summary is still lacked. Herein, a review on in situ growth engineering on 2D MXene for next‐generation rechargeable batteries is presented in detail for the first time. Meanwhile, some outlooks and perspectives are put forward. In situ growth engineering on 2D MXenes can be achieved by calcination method, hydrothermal method, solvothermal method, room‐temperature liquid‐phase reduction method, room‐temperature liquid‐phase oxidation method, electrochemical deposition method, in situ polymerization method, vapor deposition method, mechanical milling method, microwave method, composite method, self‐reduction method, coprecipitation method, immersion method, hydrolysis method, etc. These in situ growth strategies can be extended to materials beyond MXenes, such as graphene, MBene, graphdiyne, etc.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Linguistics and Language,Anthropology,History,Language and Linguistics,Cultural Studies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3