Synthesis and characterization of mixed matrix membranes with graphene oxide‐impregnated zeolitic imidazolate framework‐8 for enhanced CO2/CH4 separation

Author:

Gawali Ajay V.1,Jampa Surendra Sasikumar1ORCID,Sinha Manish Kumar1ORCID

Affiliation:

1. Department of Chemical Engineering, School of Energy Technology Pandit Deendayal Energy University Gandhinagar India

Abstract

AbstractFor the in situ growth method, the reaction time is important because increasing the reaction time may make it possible for the crystallized ZIF‐8 to fully cover the GO sheets; the excess of ZIF‐8 particles reduces the aspect ratio of the GO sheet. The reaction time will significantly change the morphology, affecting the composite's ability to absorb selective gas and, in turn, affect the gas selectivity. The present work identifies the reaction time for in situ growth of ZIF‐8 nanoparticles on GO sheets. The composite was synthesized at different reaction times of 2, 4, 6, and 8 h and incorporated into the PSF matrix. The fabricated membranes were characterized by FTIR, TGA, SEM, and XRD. The novel synthesized reaction time (6 h) was identified for better enhancement of CO2/CH4 separation. For pure gas studies, the results investigated that the CO2 permeability and CO2/CH4 selectivity were increased by 223% and 98%, respectively, compared with plain PSF membrane. In mixed gas (CO2/CH4) studies, the CO2 permeability and CO2CH4 selectivity were increased by 349% and 854%, respectively, compared with plain PSF membrane. Hence, the in situ growth method helps synthesize MOF@GO composites in the application of gas separation.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3