Estimating phenology and phenological shifts with hierarchical modeling

Author:

Wilson Samantha M.1ORCID,Anderson Joseph H.2ORCID,Ward Eric J.3ORCID

Affiliation:

1. Earth to Ocean Research Group Simon Fraser University Burnaby British Columbia Canada

2. Washington Department of Fish and Wildlife Olympia Washington USA

3. Northwest Fisheries Science Center, National Marine Fisheries Service National Oceanic and Atmospheric Administration Seattle Washington USA

Abstract

AbstractClimate‐driven changes to phenology are some of the most prevalent climate change impacts, yet there is no commonly accepted approach to modeling phenological shifts. Here, we present a hierarchical modeling framework for estimating intra‐annual patterns in phenology (e.g., peak phenological expression) and analyzing interannual rates of change in peak phenology. Our approach allows for the estimation of multiple sources of uncertainty, including observation error (e.g., imperfect observations of intra‐annual patterns in phenology like peak flowering date) and variation in phenological processes (e.g., uncertainty in the rate of change in annual peak phenological expression). Covariates may be included as predictors of annual peaks or interannual variability in phenological responses. We demonstrate the use of our hierarchical modeling framework in two migratory species—juvenile chum salmon and Swainson's thrush. We acknowledge that the complexity of hierarchical models can be difficult to implement from scratch and present an R package that can be used to model peak dates and range (number of days between 25th‐ and 75th‐quartile dates), as well as a rate of change in peak phenology. Increasing precision, calculating uncertainty, and allowing for imperfect data sets when estimating phenological shifts should help ecologists understand how organisms respond to climate change.

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3