Evolution from Topological Nodal Points to Nodal Line: Realized in Fused Carbon Allotrope

Author:

Xing Jinhui12,Yue Wentao12,Yuan Jiaren3,Zhang Lizhi4,Wei Yingcong12,Zhang Lichuan12ORCID,Xie Yuee12ORCID,Chen Yuanping12

Affiliation:

1. School of Physics and Electronic Engineering Jiangsu University Zhenjiang 212013 China

2. Jiangsu Engineering Research Center on Quantum Perception and Intelligent Detection of Agricultural Information Zhenjiang 212013 China

3. School of Physics and Materials Science Nanchang University Nanchang 330031 China

4. National Center for Nanoscience and Technology of China Beijing 100190 China

Abstract

Herein, via first‐principle calculations and theoretical analysis, a new Dirac semimetal carbon system called C32, which is composed of pentagonal, hexagonal, heptagonal, and octagonal carbon rings is systematically investigated. The stability of C32 is verified by calculating the phonon dispersion, elastic constants, etc., and an appropriate pathway for experimental synthesis is proposed. Besides, it is discovered that the system holds the quadruple rotation and inversion symmetry, resulting in the emergence of eight twisted Dirac cones (D1 and D2) with a highly anisotropic Fermi velocity from 3.83 × 105 to 8.96 × 105 m s−1 along different k directions. To substantiate the semimetallic nature of C32, its nontrivial topological properties are confirmed through the presence of topologically protected edge states, and the nonzero ℤ2 topological invariant. More importantly, by introducing biaxial strain, it is uncovered that Dirac cones can gradually evolve into a nodal line, and the perfect nodal line can be obtained when the biaxial strain is 13.3%. Furthermore, by constructing the tight‐binding model, the appearance of the Dirac cone is perfectly repeated and its evolution into the nodal line under biaxial strain is explained.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Senior Talent Foundation of Jiangsu University

Natural Science Foundation of Jiangxi Province

Jiangsu University

Jiangsu Provincial Department of Science and Technology

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3