Optical Properties of Low‐Defect Large‐Area Hexagonal Boron Nitride for Quantum Applications

Author:

Sankar Shrivatch1,Saha Shantanu2,Chen Jia‐Shiang34,Chien Shih‐Po5,Lan Yann­‐Wen5,Ma Xuedan346,Snure Michael7,Arafin Shamsul1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering The Ohio State University Columbus OH 43210 USA

2. Department of Electrical, Electronics and Communication Engineering GITAM School of Technology GITAM (Deemed to be University) Hyderabad Telangana 502329 India

3. Center for Nanoscale Materials Argonne National Laboratory Lemont IL 60439 USA

4. Center for Molecular Quantum Transduction Northwestern University Evanston IL 60208 USA

5. Department of Physics National Taiwan Normal University Taipei 116 Taiwan

6. Consortium for Advanced Science and Engineering University of Chicago Chicago IL 60637 USA

7. Air Force Research Laboratory Sensors Directorate Wright‐Patterson AFB OH 45433 USA

Abstract

Intrinsic defects and their concentrations in hexagonal boron nitride (h‐BN) play a key role in single‐photon emission. In this study, the optical properties of large‐area multilayer h‐BN‐on‐sapphire grown by metal‐organic chemical vapor deposition are explored. Based on the detailed spectroscopic characterization using both cathodoluminescence (CL) and photoluminescence (PL) measurements, the material is devoid of random single‐point defects instead of a few clustered complex defects. The emission spectra of the measurements confirm a record‐low‐defect concentration of ≈104 cm−2. Post‐annealing, no significant changes are observed in the measured spectra and the defect concentrations remain unaltered. Through CL and PL spectroscopy, an optically active boron vacancy spin defect is identified and a novel complex defect combination arising from carbon impurities is revealed. This complex defect, previously unreported, signifies a unique aspect of the material. In these findings, the understanding of defect‐induced optical properties in h‐BN films is contributed, providing insights for potential applications in quantum information science.

Funder

National Science Foundation

Air Force Office of Scientific Research

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3