AlYN Thin Films with High Y Content: Microstructure and Performance

Author:

Solonenko Dmytro1ORCID,Strube Jannik1,Fammels Jannick1,Fisslthaler Evelin23,Röbisch Volker4,Howell Kaitlin4,Sinani Taulant1,Pilz Julian1,Pashchenko Vladimir1,Risquez Sarah1,Moridi Mohssen1,Bruckner Gudrun1

Affiliation:

1. Silicon Austria Labs GmbH Europastraße 12 A-9524 Villach Austria

2. Institute of Electron Microscopy and Nanoanalysis Graz University of Technology Steyrergasse 17 8010 Graz Austria

3. Graz Centre for Electron Microscopy Steyrergasse 17 8010 Graz Austria

4. Evatec AG Hauptstraße 1A CH-9477 Trübbach Switzerland

Abstract

Pseudobinary nitride alloys display enhanced piezoelectric properties compared to their nonalloyed counterparts enabling their wide application in high‐performance transducers and acoustic wave resonators. Their fabrication remains challenging because of their inherently stochastic nature, which requires in‐depth understanding of the film growth dynamics and the interplay of deposition parameters. Herein, thin Al1−xYxN films are produced with varied yttrium content in the range from x = 0.09 to 0.28 on a gradient seed layer on 200‐mm Si substrates and investigated via various X‐ray diffraction methods, high‐resolution scanning transmission electron microscopy, nanoindentation, and atomic force microscopy. Bulk acoustic wave resonators, solidly mounted on a multilayer acoustic isolation, are fabricated to analyze the piezoelectric performance of the films and to extract corresponding material parameters via fitting of the high‐frequency electrical response by 1D Mason's model. The trend of declining coupling is explained by the lattice softening and the increase in electron density, experimentally observed by monitoring reduced elastic modulus and dielectric constant values, respectively. The absence of expected enhancement of the piezoelectric modulus is interpreted by the presence of oxygen impurities, facilitating the inhomogeneous strain of the AlYN lattice, which effectively cancels the energy flattening phenomenon, found in III–V pseudobinary alloys.

Funder

Austrian Smart Systems Integration Research Center

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

Reference53 articles.

1. Influence of growth temperature and scandium concentration on piezoelectric response of scandium aluminum nitride alloy thin films

2. YxAl1−xN thin films

3. Enhanced Piezoelectric Response of AlN via CrN Alloying

4. Unlocking AlN Piezoelectric Performance with Earth‐Abundant Dopants

5. V.Pashchenko S.Mertin F.Parsapour J.Li P.Muralt S.Ballandras 2017 Joint Conf. European Frequency and Time Forum and IEEE Int. Frequency Control Symp. (EFTF/IFCS) IEEE Piscataway NJ2017 pp.565–566 ISSN: 2327-1949.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3