Magnetism of Iron Oxide Nanoparticles: From Atomic Order to Complexity at the Mesoscopic Scale

Author:

Darcheville Marie1,Adenot‐Engelvin Anne‐Lise1ORCID,Boscher Christophe1,Grenèche Jean‐Marc2,Lefèvre Christophe3,Robert Jérôme3,Ersen Ovidiu3,Gonzalez Calbet José Maria4,Ruiz Gonzalez Maria Luisa4,Thiaville André5,Sanchez Clément6

Affiliation:

1. CEA‐DAM Le Ripault BP 16 37260 Monts France

2. Faculté des Sciences & Techniques Avenue Olivier Messiaen Institut Matériaux et Molécules du Mans UMR CNRS 6283, Avenue Olivier Messiaen 72085 Le Mans Cedex 09 France

3. Institut de Physique et Chimie des Matériaux de Strasbourg Université de Strasbourg, CNRS 23 rue du Loess (Bât. 69) BP 43 67034 Strasbourg Cedex 2 France

4. Departamento Química Inorgánica Facultad de Químicas Universidad Complutense 28040 Madrid Spain

5. Laboratoire de Physique des Solides Université Paris‐Saclay CNRS UMR 8502 91400 Orsay France

6. Laboratoire Chimie de la Matière Condensée de Paris UPMC‐CNRS‐Collège de France 75252 Paris Cedex 05 France

Abstract

Zn‐substituted iron oxide nanoparticles of ≈5 nm in diameter are synthetized by a microwave‐assisted thermal decomposition method. The addition of ethylene glycol results in a size increase to 22 nm. Cationic disorder has been observed by electron energy loss spectroscopy–scanning transmission electron microscopy. Using Mössbauer spectrometry combined with Rietveld analysis, the complete cationic and vacancies repartition in the lattice is determined, as well as the canting of magnetic moments. This allows the magnetic moment to be calculated, in good agreement with that measured. The alternating current magnetic susceptibility is modeled by the Néel–Brown and the Coffey models, showing some discrepancy between these two approaches which is discussed. The largest particles show a complex morphology involving an oriented attachment mechanism of smaller units. Their cationic disorder and internal porosity have been evidenced and quantified, and the work shows that despite these defects they behave rather as magnetically blocked nanoparticles.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3