Thickness‐Dependent Bandgap and Atomic Structure in Elemental Tellurium Films

Author:

Sun Yuting12,Gotoh Tamihiro3,Li Bowen4,Li Huanglong4,Zhu Min1ORCID

Affiliation:

1. National Key Laboratory of Materials for Integrated Circuits Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences Shanghai 200050 China

2. University of Chinese Academy of Sciences Beijing 100029 China

3. Department of Physics Graduate School of Science and Technology Gunma University Maebashi 3718510 Japan

4. Department of Precision Instrument Center for Brain Inspired Computing Research Tsinghua University Beijing 100084 China

Abstract

Elemental tellurium electrical switch, relying on a transient crystal–liquid–crystal phase transition, has recently been proposed as a promising selector candidate for the next‐generation 3D high‐density memory, bridging performance gap in today's computer. Further miniaturization of the switch cell to increase memory density strongly depends on the scalability of the tellurium film, which, however, has not been experimentally studied. Herein, the tellurium films are prepared with the thickness downscaled from 400 to 2 nm and a significant increase is found in the bandgap from 0.29 to 0.91 eV, as predicted by ab initio molecular dynamics. Interestingly, the as‐deposited tellurium films with a thickness above 3 nm are in the crystalline trigonal phase, whereas 2 nm thick film suddenly becomes amorphous, observed by both Raman and transmission electron microscopies. In this finding, since the leakage current of the elemental tellurium switch is determined by both the Schottky barrier between tellurium/electrode interface and the bandgap of the tellurium film, a reduction in leakage current is predicted with further miniaturization.

Publisher

Wiley

Reference36 articles.

1. D.Reinsel J.Gantz J.Rydning International Data Corporation (IDC) April2017.

2. Phase-Change Materials for Electronic Memories

3. B.Tallis www.anandtech.com/show/11227/(accessed: March 2017).

4. A.Fazio inIEDM Francisco USA December2020 p.24.1.1.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nanosecond Phase‐Transition Dynamics in Elemental Tellurium;Advanced Functional Materials;2024-08-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3