The Interplay between Strain, Sn Content, and Temperature on Spatially Dependent Bandgap in Ge1−xSnx Microdisks

Author:

Zaitsev Ignatii1,Corley-Wiciak Agnieszka Anna12,Corley-Wiciak Cedric1,Zoellner Marvin Hartwig1,Richter Carsten3,Zatterin Edoardo4,Virgilio Michele5,Martín-García Beatriz67,Spirito Davide1,Manganelli Costanza Lucia1ORCID

Affiliation:

1. IHP–Leibniz-Institut für Innovative Mikroelektronik Im Technologiepark 25 15236 Frankfurt (Oder) Germany

2. RWTH Aachen University Templergraben 55 52062 Aachen Germany

3. IKZ – Leibniz -Institut für Kristallzüchtung Max-Born-Straße 2 D-12489 Berlin Germany

4. ESRF – European Synchrotron Radiation Facility 71, avenue des Martyrs, CS 40220 38043 Grenoble Cedex 9 France

5. Dipartimento di Fisica “Enrico Fermi” Università di Pisa Largo Bruno Pontecorvo 3 56127 Pisa Italy

6. CIC nanoGUNE BRTA Tolosa Hiribidea 76, Basque Country 20018 Donostia-San Sebastián Spain

7. IKERBASQUE, Basque Foundation for Science Basque Country 48009 Bilbao Spain

Abstract

Germanium–tin (GeSn) microdisks are promising structures for complementary metal–oxide–semiconductor‐compatible lasing. Their emission properties depend on Sn concentration, strain, and operating temperature. Critically, the band structure of the alloy varies along the disk due to different lattice deformations associated with mechanical constraints. An experimental and numerical study of Ge1−x Sn x microdisk with Sn concentration between 8.5 and 14 at% is reported. Combining finite element method calculations, micro‐Raman and X‐ray diffraction spectroscopy enables a comprehensive understanding of mechanical deformation, where computational predictions are experimentally validated, leading to a robust model and insight into the strain landscape. Through micro‐photoluminescence experiments, the temperature dependence of the bandgap of Ge1−x Sn x is parametrized using the Varshni formula with respect to strain and Sn content. These results are the input for spatially dependent band structure calculations based on deformation potential theory. It is observed that Sn content and temperature have comparable effects on the bandgap, yielding a decrease of more than 20 meV for an increase of 1 at% or 100 K, respectively. The impact of the strain gradient is also analyzed. These findings correlate structural properties to emission wavelength and spectral width of microdisk lasers, thus demonstrating the importance of material‐related consideration on the design of optoelectronic microstructures.

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3