Tuning the Bandgap and Topological Phase Transition in Bilayer Van der Waals Stanane by Electric Field

Author:

Zhao Yifei1,Li Zhongyao1ORCID

Affiliation:

1. College of Science University of Shanghai for Science and Technology Shanghai 200093 P. R. China

Abstract

For very few special 2D materials, electric field can be used to realize the topological phase transition from normal insulator (NI) into topological insulator (TI). To design the low‐power electronic devices based on 2DTIs, tunable and practical 2DTIs may be necessary. Herein, a model of electric field‐tunable 2DTIs based on bilayer van der Waals semiconductors is proposed. The bilayer semiconductors can be tuned by electric field from NIs into TIs. As a good candidate of the predicted 2DTIs, the possible topological phase transition of bilayer stanane (SnH) under electric field using first‐principles calculations is studied. The calculations suggest that bilayer stanane can be converted from NI into TI by vertical electric field. The topological bandgap can be up to about 22.8 meV, which is giant for the electric field‐tunable 2DTIs. It can be further enlarged by vertical pressure. This discovery provides new possibilities for converting NIs into TIs by electric field and creating multifunctional topological field‐effect transistors by tunable 2DTIs.

Funder

University of Shanghai for Science and Technology

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3